Methyltris(trifluoromethyl)phosphoranes, Me(CF₃)₃PX. Tetra-alkylphosphoranes with Fluoro-, Chloro-, and Methoxy-substituents

By KWAT I. THE and RONALD G. CAVELL*

(Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada)

Summary N.m.r. spectroscopic studies of three new tetra-alkylphosphoranes, $Me(CF_3)_3PX$ (X = F, Cl, OMe), confirm their true phosphorane character and suggest that the ground state structures observable at low temperatures have a halogen and a CF_3 (X = F, Cl) or two CF_3 groups (X = Me) in the axial positions of a trigonal bipyramidal framework.

THE only reported tetra-alkylphosphoranes¹ Me₄PF and Me₃BuⁿPF appear to be unstable with respect to the phosphonium salt structure except in an isolated low temperature matrix or in the mass spectrometer. We have found that stable molecular tetra-alkylphosphoranes Me(CF₃)₃PF (I), m.p. 20-21 °C uncorr. (yield 82%) and Me(CF₃)₃PCl (II), m.p. 56-57 °C uncorr. (69%), can be

easily prepared by the reactions of $(CF_3)_3PX_2$ (X = F² or Cl³) with Me₄Sn or Me₄Pb. A third tetra-alkylphosphorane, Me(CF₃)₃POMe (III), was obtained in quantitative yield from the reaction of either (I) or (II) with Me₃SiOMe at room temperature. Each compound hydrolyses stoicheiometrically in neutral or alkaline aqueous media to give either 2 or 3 mol. of CF₃H and the Me(CF₃)PO₂⁻ or MePO₃²⁻ ions⁴⁻⁶ in solution.

The strongest supporting evidence for phosphorane character is provided by the observation of all significant nuclear spin coupling interactions in the normal temperature (+33 °C) n.m.r. spectra of (I) (wherein the CF₃ groups are equivalent) especially the major doublet of 843 Hz,

which arises from the single fluorine atom located in the axial position⁶ of the trigonal bipyramidal framework.

Low-temperature ¹⁹F n.m.r. spectroscopy indicates that both (I) and (II) most likely possess the ground state structure (A). The CF₃ portion of the ¹⁹F n.m.r. spectrum of (I) at -90 °C showed clearly two chemically shifted resonances in the intensity ratio 2:1. The relatively large value of ${}^{2}J_{PF}$ (135 Hz) in the more intense portion of the spectrum suggests⁷ that this resonance arises from two equatorial CF₃ groups and the low value of ${}^{2}J_{PF}$ (35.5 Hz) in the unit intensity portion similarly suggests that this signal arises from an axial CF₃ group. The equatorial CF₃ signal also showed coupling to the axial F and to the unique (axial) CF_3 group. The axial CF_3 signal showed coupling to the equatorial CF₃ groups but not to the fluorine atom trans to it. In neither portion of the CF₃ spectrum was the long range F-H coupling resolved. Only the major ${}^{1}J_{PF}$ coupling constant was observed in the spectral region arising from the single F atom at low temperatures owing to the low intensity of the signal. All the coupling constants were confirmed by ${}^{31}P \cdots {}^{1}H$ n.m.r. spectroscopy. The large positive ³¹P chemical shift values (vs. P4O6)⁸ obtained therefrom are suggestive of phosphorane rather than phosphonium salt character.⁵

The parameters obtained for (II) are similar to those of (I) but only partial resolution of the CF_3 resonances into two chemically shifted regions with intensity ratio 1:2 could be achieved for (II) at -100 °C. The behaviour of (II) is, however, consistent with the proposed ground-state structure (A).

The ¹⁹F n.m.r. spectrum of (III) at +33 °C also indicated averaged CF₃ environments. At -40 °C, two chemically shifted CF₃ regions were observed; a doublet of septets with a large ²J_{PP} arising⁷ from an equatorial CF₃ group and an incompletely resolved doublet of quartets of twice the intensity with a smaller ²J_{PP} which arises from two axial CF₃ groups. Both regions showed a coupling of 13.6 Hz due to ⁴J(F_{az}F_{eq}). Proton-decoupled ³¹P spectra at -50 °C confirmed the presence of two ²J_{PP} values. In keeping with our previous suggestion,⁷ CF₃ groups occupy

TABLE.	N.m.r.	data

	Chemical shifts					Coupling constants							
Compound		Temp. /°C	$ au^{8}$	φ(CF ₈) ^b p.p.m.	φ(PF) ^b p.p.m.	δ(p) ^c p.p.m.	•Јрн	⁸ /гн	4J _{FH}	1 _{<i>J</i>рр}	² <i>J</i> pf	*J _{FF}	4JFF
Me(CF ₃) ₃ PF (I)	••	$+30 \\ -90$	7·89 {	62·3 59.7d,e 68·2 ^f ,g	13.3	$^{+164\cdot 1}_{+166\cdot 4^{1}}$	15.4	8.7	0.6	843 827	$102.5 \\ 135.0 \\ 35.0$	17·3 16·0h	12·5
Me(CF ₃) ₃ PCl (II)	••	+30	7.48	63.3		$+165 \cdot 8$	12.8		0.8		101-2		
Me(CF _s) _s PMe (III)	••	+30	${8 \cdot 10^{1} \atop 5 \cdot 97^{1}}$	67 ∙0 ¤		+171.3	$11 \cdot 2 \\ 12 \cdot 8$		0·9 0·9		75.5		
		40	{	60.0d,g 66.9f,e		+169-91					$108.5 \\ 62.0$		13∙6 13∙6

^a τ relative to Me₄Si. ^b ϕ in p.p.m. from CFCl₃ as internal standard, +ve indicating resonance to high field. ^c p.p.m. vs. P₄O₆^a + ve indicating resonance to high field. ^d Equatorial CF₃. ^e Relative intensity 2F. ^t Axial CF₃. ^g Relative intensity 1F. ^b Value for ^{*}J (FPCF_{ac}); the coupling ^{*}J (FPCF_{ac}) was not observed. ^t Me group on P. ^t MeO group. ^k At 80 °C. ^{1 asp} ··· {¹H} spectrum.

axial positions of a trigonal bipyramid in preference to the Me and OMe groups; thus the ground-state structure of (III) is (B). Any alternative assignment requires ${}^{2}J_{PF}$ to vary widely with substitution on phosphorus without apparent reason and we think that this is unlikely since ${}^{2}J_{\rm PF}$ appears to be a consistent and predictable indicator of the position of the CF₃ group on phosphorus.

All three compounds clearly behave as molecular phosphoranes at ordinary temperatures making these the first truly stable tetra-alkylphosphoranes to be obtained. It seems reasonable to suggest that the replacement of alkyl groups by strongly electron-withdrawing trifluoromethyl groups has favoured the formation of the stable fiveco-ordinate structure.

We thank the National Research Council of Canada for financial support of this work.

(Received, 29th October 1974; Com. 1329.)

¹ H. Schmidbaur, K-H. Mitschke, and J. Weidlein, Angew. Chem. Internat. Edn., 1972, 11, 144.

² W. Mahler, Inorg. Chem., 1963, 2, 230.
³ H. J. Emeléus, R. N. Haszeldine, and R. C. Paul, J. Chem. Soc., 1955, 563.

⁴ R. G. Cavell and K. I. The, unpublished results.
⁵ V. Mark, C. H. Dungan, M. M. Crutchfield, and J. R. Van Wazer, *Topics Phosophorus Chem.*, 1967, 5, 227.

E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 1963, 2, 613.
R. G. Cavell, D. D. Poulin, K. I. The, and A. J. Tomlinson, J.C.S. Chem. Comm., 1974, 19.
A. C. Chapman, J. Homer, D. J. Mowthorpe, and K. T. Jones, Chem. Comm., 1965, 121. The chemical shift of 85% H₃PO₄ is +112 p.p.m. (to high field) of P_4O_6 .